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Supplementary Notes 1

Extended Hamiltonian and Canonical
Transformations

1.1 Generalizing the Independent Co-ordinate

The variational principle on which the Lagrangian is based is that

S =

∫ t2

t1

L(qi, q̇i, t) dt (1.1)

takes an extremum when qi(t) matches its true trajectory, keeping the constraint that the
end points are fixed. Here, time takes on a special role which is somewhat inconvenient when
the system is explicitly time-dependent, or when considering relativistic dynamics.

To put time on a more equal footing with other co-ordinates, we consider an almost
arbitary quantity τ which characterizes the motion of the system. The only requirement is
that in some neighborhood around the actual evolution or path of the system, any slightly
altered path has to have well-defined values of τ which vary monotonically along the path
(no double values, at least for short sections of the path). Potentially useful choices for τ
are the proper time, path length, one of the spatial co-ordinates if the geometry allows it,
or a rescaling of the time (this can be an alternative to using the Floquet transformation).
Note that τ is in some sense a local function of the qi, derivatives q̇i, and time t, but we will
focus on the inverse relationships qi(τ), q̇i(τ), and t(τ) defined along a given path. We can
then rewrite the action integral as

S =

∫ τ2

τ1

L

[
qi(τ),

q′i(τ)

t′(τ)
, t(τ)

]
t′(τ) dτ , (1.2)

where t′ ≡ dt/dτ and q′i ≡ dqi/dτ = t′dqi/dt = t′q̇i. Now we can treat time t as just another
co-ordinate, on an equal footing with the others. This gives us a new Lagrangian with an
extra degree of freedom,

Lext(qi, t, q
′
i, t
′) = L

(
qi,
q′i
t′
, t

)
t′ . (1.3)
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There is never any explicit dependence on τ , which makes sense because it is arbitrary.
Of course, there are extra constraints in this problem, but they fit into the Lagrangian
framework. In particular, requiring t(τ1) = t1 is no different than imposing a boundary
condition on the value of qi(τ1). Now if we recalculate the canonical momentum, the term
conjugate to qi is still the same pi as in the original formulation, but there is a new quantity

pt ≡
∂Lext

∂t′
=

1

t′

(
−
∑
i

piq
′
i + Lext

)
= −

∑
i

piq̇i + L(qi, q̇i, t) = −H(qi, pi, t) . (1.4)

Normally, there would not be a constraint that one value of momentum is determined by the
co-ordinates and the other momenta. This is because we added the extra degree of freedom
and have to take it away somehow. Thus, even though the action can be rewritten as

S =

∫ τ2

τ1

(∑
i

piq
′
i + ptt

′

)
dτ , (1.5)

which suggests that the extended Hamiltonian is equal to zero, we have to impose the
constraint that

pt +H(qi, pi, t) = 0 (1.6)

in order to obtain the equations of motion. This is an example of an auxiliary condition.
Auxiliary conditions are handled by adding the left hand side times some arbitary function
of τ to the functional form of the original Hamiltonian, but since in this case we are starting
from zero we just have

Hext = t′(τ) [pt +H(qi, pi, t)] . (1.7)

Then the equations of motion are unchanged for dpi/dt, but the evolution of pt is

p′t = −∂Hext

∂t
= −t′∂H

∂t
. (1.8)

Given that dH/dt = ∂H/∂t, this guarantees that if the constraint holds initially, it will hold
throughout once we have found the actual orbit through the variational principle.

We can always add a differential term dF to the action integral and define an alternative
Hamiltonian with the same dynamics. Since τ is arbitrary, we can choose a form that is
convenient, for example τ = t would give t′ = 1 and p′t = −∂H/∂t. More generally, we can
apply any canonical transformation to the n + 1 co-ordinates, and rewrite the constraint
Eq. (1.6) in the most general way as

F (Qu, Pu) = 0 . (1.9)

Here, the index u ranges from 1 to n+1, the new phase space variables can be a complicated
function of the original ones, and F will not explicitly depend on τ . The new extended
Hamiltonian will have the form

Ĥext(Qu, Pu, τ) = λ(τ)F (Qu, Pu) . (1.10)
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Note that nowhere did we assume anything about the original H, and it can have arbitary
time-dependence. The point is that any time-dependence can expressed in terms of t instead
of τ , and mixed into other variables through canonical transformations.

The function λ is set by how we wish to define τ . One common choice is to take τ = Qn+1

(often you will see Q0, where the index of u goes from 0 to n), making this co-ordinate “time-
like”. Being able to do this depends somewhat on the dynamical system. To have Q′n+1 = 1
requires λ ≡ (∂F/∂Pn+1)−1. Then we have

P ′n+1 =
dPn+1

dQn+1

= − ∂Hext

∂Qn+1

= −∂F/∂Qn+1

∂F/∂Pn+1

. (1.11)

Often it is simplest to write F so λ ≡ 1, so the extended Hamiltonian Ĥext = Pn+1 +
K(Qi, Pi, Qn+1), where i ranges from 1 to n, Then Q′n+1 = 1, P ′n+1 = −∂K/∂Qn+1, and for
the other degrees of freedom Q′i = ∂K/∂Pi and P ′i = −∂K/∂Qi.

In general, the action integral is

S =

∫ τ2

τ1

(
n+1∑
i=1

PuQ
′
u − λF (Pu, Qu)

)
dτ . (1.12)

The constraint that F = 0 for the proper orbit makes the definite integral∫ n+1∑
i=1

PudQu (1.13)

particularly interesting. This is one way to introduce Hamilton-Jacobi theory, by taking
Qn+1 to be time-like and expressing the other degrees of freedom in terms of action-angle
variables.

1.2 Extended generating functions and canonical trans-

formations

There is no significant difference between canonical transformations in extended phase space
versus in regular phase space. The main thing to keep in mind is that the conjugate to
time is equal in value to −H rather than +H. Often, pt is replaced by e = −pt, or possibly
h = −pt.

Let us focus on generating functions of the second kind, and we consider just one spatial
degree of freedom for simplicity. For a given F2(q, t, P, E), we have

p =
∂F2

∂q
, e = −∂F2

∂t
, Q =

∂F2

∂P
, T = −∂F2

∂E
. (1.14)

Returning to the regular phase space, the new Hamiltonian has to be Ĥ = H − e + E to
preserve the constraint. The extended Hamiltonian can only be different by a proportion-
ality factor because it follows the same constraint to vanish on the true orbit. Unless the
independent variable τ is redefined that ratio should be 1.
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1.3 Extended point transformations

Redefining the co-ordinates is more interesting in extended phase space because we can
easily redefine time along with the spatial coordinates. Let us suppose we already have
the usual Hamiltonian in the form H(x, y, s, px, py, ps, t) where s is a desirable choice for
the independent coordinate. In extended phase space we have −e + H for the extended
Hamiltonian. If we want to swap s and t, we can use one of the simplest generating functions,
F2 = xPx + yPy − sE + tPs. Then the transverse variables are unchanged and ps = −E,
e = −Ps, S = t and T = s. Going back to regular space, the new Hamiltonian K has to
satisfy K = E = −ps, and so

H (x, y, s, px, py,−K (x, y, t, px, py,−e, s) , t)− e = 0 . (1.15)

We can get the motion in time by using t′ = −∂K/∂e.
If H is independent of t, then so is K. This means that e′ = −∂K/∂t = 0, and e is a

constant of the motion. Thus we can write K(x, y, px, py, s; e) for the Hamiltonian where e is
just a parameter. This gives a family of solutions which appear to only have two degrees of
freedom, although there is still the s-dependence in the Hamiltonian which effectively acts
like an additional degree of freedom.

1.4 Lorentz transformation

First, let us consider non-relativistic mechanics and change to a reference frame moving with
velocity v relative to the original frame. In this case we will keep time unchanged, T = t,
and the new co-ordinate will satisfy Q = q − vt. Then we have

F2(q, t, P, E) = Pq − Et− v(Pt−m0q) . (1.16)

This yields
p = P +m0v, e = E + vP, Q = q − vt, T = t . (1.17)

The extended Hamiltonian is unchanged. While the value of the regular Hamiltonian satisfies
H = Ĥ+vP as required by the energy equation, its form is the same as long as any movement
in for example, constraints or potentials is taken into account.

The Lorentz transformation is defined by

F2(q, t, P, E) = γ

[
Pq − Et− v

(
Pt− Eq

c2

)]
, (1.18)

where γ = (1 − v2/c2)−1/2 is the Lorentz factor associated with the velocity shift v. This
yields

p = γ(P + Ev/c2), e = γ(E + vP ), Q = γ(q − vt), T = γ(t− vq/c2) . (1.19)

The conjugate momenta must always be defined in relation to the dynamical system, in
particular when electromagnetic fields are present we must use p = pmech + qA/c. It takes
some work to see this, but even in this case the form of the expression for the Hamiltonian
is unchanged, just the specific values are shifted and the fields have to be transformed.
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Supplementary Notes 2

Fluid Equations

2.1 Deriving bulk equations from the Vlasov equation

We start from the continuity equation, which is in some sense the most direct way to get to
the fluid equations.

0 =
∂f

∂t
+

∂

∂q
(q̇(q, p, t) f) +

∂

∂p
(ṗ(q, p, t) f) . (2.1)

For Hamiltonian flow, this yields

0 =
∂f

∂t
+

∂

∂q
·
(
∂H

∂p
f

)
− ∂

∂p
·
(
∂H

∂q
f

)
=

∂f

∂t
− {f,H} =

df

dt
, (2.2)

where the two second-derivatives of H cancel out.
To get fluid equations, we essentially take integrals, with additional multiplicative factors,

of Eq. (2.1). Integrating over all of the p variables:

0 =

∫
∂f

∂t
dp+

∫
∂

∂q
·(q̇(q, p, t) f) dp+

∫
∂

∂p
·(ṗ(q, p, t) f) dp =

∂

∂t

∫
fdp+

∂

∂q

∫
q̇f dp+0 ,

(2.3)
assuming that the distribution is bounded in momentum-space. We can rewrite this as the
fluid continuity equation,

0 =
∂n

∂t
+∇q · (nv) =

dn

dt
+ n∇q · v . Aq (2.4)

This gives the standard fluid flow conservation equation, where we have defined the fluid
density and flow velocity

n(q, t) ≡
∫
f dp , v(q, t) ≡ 1

n(q, t)

∫
q̇f dp , (2.5)
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and we re-use the symbol d/dt to be the convective derivative when acting on fluid quantities,

d

dt
≡ ∂

∂t
+ v · ∂

∂q
. (2.6)

Note that although phase space flow is incompressible, the fluid density and velocity are
under no such restrictions.

Additional fluid quantities will have to be defined as higher order moments are taken.
For example, multiplying by one momentum component, pi, before integrating yields

0 =

∫
pi
∂f

∂t
dp+

∫
pi
∂

∂q
· (q̇(q, p, t) f) dp+

∫
pi
∂

∂p
· (ṗ(q, p, t) f) dp

=
∂

∂t

∫
pifdp+

∂

∂q

∫
piq̇f dp−

∫
ṗif dp

=
∂

∂t
(np̄i) +

∂

∂q

(
nvp̄i +

∫
(pi − p̄i(q, t)) (q̇ − v)f dp

)
− nFi(q, t) , (2.7)

where we define

p̄i(q, t) ≡
∫
pif dp , Fi(q, t) ≡

1

n(q, t)

∫
ṗif dp . (2.8)

Some terms which average to zero have been removed to obtain this result. We can also use
the fluid conservation equation to simplify things further,

0 = n
d

dt
p̄i +

N∑
k=1

∂

∂qk
Pk,i(q, t)− n(q, t)Fi(q, t) , (2.9)

where N is the number of degrees of freedom and the pressure tensor is defined as

Pk,i(q, t) ≡
∫

(q̇k − vk) (pi − p̄i) f dp . (2.10)

Often, the pressure tensor is split into the isotropic scalar part,

p(q, t) ≡ 1

N

N∑
i=1

Pi,i(q, t) , (2.11)

and the anisotropic part Πi,j = Pi,j−pδi,j. Even when there is more than the scalar pressure,
typically the anisotropic part is still diagonal for a weakly-interacting system. Off-diagonal
elements are associated with viscosity.

This process can be continued to include the dynamics of energy and other higher-order
terms. However, there will always be additional moments which will enter into the resulting
expressions.
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2.2 Issues with fluid equations

Obtaining a closed set of fluid equations is typically not possible except in some very special
cases. However, for weakly interacting systems with a simple (e.g., Gaussian) distribution
function, higher-order moments can be approximated in terms of lower moments.

Scattering is another important affect, in the sense that when short-range interactions
are ignored in the Hamiltonian, this winds up having to be represented as abrupt, often
random kicks which appear to shuffle around density in phase space. Ultimately, this comes
from approximating phase space as having 2N degrees of freedom, rather than 2N times
the number of particles. Scattering can also be generated by other elements of the system,
for example electrons can be scattered by photons or vice-versa. The Vlasov equation may
also have to be corrected by source or sink terms, such as an external supply of particles,
reactions between particles, or some sort of decay mechanism.

In practice, the fluid equations miss may effects that are hidden in the averages. This
is especially true when the system or even some subset of particles is weakly interacting.
Often fixes for this involve adding extra “kinetic” terms in the conservation equations, or
even using nonlocal operators (e.g., integrals).
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Supplementary Notes 3

Relativity and Lorentz
Transformations

3.1 Introduction

Note that this will be more of a “cheat sheet” on relativity than a full description.
For general relativity, the key focus is the geometry of space-time as defined by the

infinitesimal distance element dτ between two points in some arbitrarily small local neigh-
borhood. By convention, and since we will be discussing paths of particles moving at less
than the speed of light, we talk about the proper time instead of using length. For special
relativity, it is still useful to think in terms of this quantity but it has a very simple form,

c2dτ 2 = −(x0 − x1)2 − (y0 − y1)2 − (z0 − z1)2 + c2(t0 − t1)2 (3.1)

which defines Minkowski space. The geometry is flat, so there is no need to resort to
infinitesimal elements.

We want this metric to be invariant under simple changes of reference frame. In par-
ticular, anything moving at the speed of light has dτ = 0, so the speed of light has to be
invariant. Thus this metric is a shortcut to imposing such a condition.

Any purely spatial rotation or translation will preserve proper time, as will a simple time
shift. For anything more complicated, only the Lorentz transformation will preserve proper
time. The Lorentz transformation can be expressed as a group of matrices, but for simplicity
let us just write the equations for a shift to a velocity v in the ẑ direction:

x′ = x
y′ = y
z′ = γ(z − vt)
t′ = γ(t− vz/c2) , (3.2)

where

γ ≡ 1√
1− v2/c2

. (3.3)
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You can check for yourself that dτ 2 is preserved for any v < c. This is one example (really,
the fundamental example) of a Lorentz invariant.

3.2 Lorentz transformations of momentum and energy

The conjugate quantities, momentum and energy, satisfy a similar invariant which is the rest
mass or energy:

m2
0c

4 = e2 − (p2
x + p2

y + p2
z)c

2 . (3.4)

Thus they also transform in a similar way,

p′x = px
p′y = py
p′z = γ(pz − ve/c2)
e′ = γ(e− vpz) , (3.5)

I am using e here for energy (including the rest mass), below we will use h and H for the
value of the original and transformed Hamiltonian. Hopefully this will avoid confusion with
electric field.

Any kind of plane wave that goes like f(ωt − kxx − kyy − kzz) can be written in the
boosted frame as being proportional to f(ω′t′ − k′xx′ − k′yy′ − k′zz′) with

k′x = kx
k′y = ky
k′z = γ(kz − vω/c2)
ω′ = γ(ω − vkz) . (3.6)

For electromagnetic fields, this can be interpreted in terms of photons that have energy ~ω
and momentum ~k.

There is a particular useful formula for the Doppler shift when there is an angle θ between
the wave vector of the field and the direction of the boost. Taking kz = (ω/c) cos θ, the inverse
Lorentz transformation gives

ω =
ω′

γ(1− β cos θ)
, (3.7)

with β ≡ v/c. The transformed angle is given by

tan θ =
sin θ′

γ(cos θ′ + β)
. (3.8)

Note that for γ � 1, almost all angles θ′ (except for those very close to π) have counterparts
θ ' 1/γ. When γ � 1 and θ � 1, we can approximate

ω ' 2γω′

1 + γ2θ2
. (3.9)
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For any system, we can use Eq. (3.5) to see how the total energy and momentum trans-
form. For example, the reference frame velocity shift v which takes one into the center-of-
momentum frame (where the total momentum vector vanishes) satisfies v = pc2/e, where p
is the total momentum and e is the total energy in the system.

3.3 Lorentz transformations of other physical quanti-

ties

Having defined the transformation of phase space, the transformation of almost any other
quantity is easy to derive. For example, anything which produces a force (such as an electric
field) gives a dp/dt term, and we know how momentum and time transform. Here we will
just give results for various quantities, always involving a boost in the z-direction.

The electromagnetic fields transform very differently from position and momentum:

Ez = E ′z , E⊥ = γ (E′⊥ − v ×B′) ,

Bz = B′z , B⊥ = γ

(
B′⊥ +

1

c2
v ×E′

)
. (3.10)

Here, E⊥ and B⊥ refer to the components of the electric and magnetic fields perpendicular
to the boost velocity v, so they can be taken to include the x and y components. For
electromagnetic fields the Lorentz transformation has been inverted, because usually we
start with the fields in the rest frame and we want to know the fields in the lab frame.

There are many other ways to describe the fields. The tensor notation is often useful,
especially for expressing quantities in an invariant way. We will concentrate on the electro-
magnetic potentials, which form a four-vector (φ/c,A) that transforms exactly like (ct, r):

Ax = A′x
Ay = A′y
Az = γ(A′z + vΦ′/c2)
φ = γ(φ′ + vA′z) , (3.11)

The wave equation involves an invariant functional form, the D’Alembertian, which is
usually denoted as a square symbol:

0 = �f ≡
(

1

c2

∂2

∂t2
−∇2

)
f . (3.12)

For electromagnetic waves we have either �E = 0 or �A = 0 with ∇ ·A = 0 as well.
There are two main field invariants: E ·B, and the Lagrangian field density

L =
ε0
2

(
E2 − c2B2

)
. (3.13)

The total number of photons in a pulse is also a Lorentz invariant.
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The field energy density is S0 = (ε0/2)E2 + (1/2µ0)B2. Separating into components
parallel and perpendicular to the velocity shift, as in Eq. (3.10), we find that

S0 =
ε0
2

[
E′

2
+ c2B′

2
+ 2

v2

c2
γ2
(
E′⊥

2
+ c2B′⊥

2
)

+ 4γ2v · (E′ ×B′)
]
. (3.14)

The Poynting vector S = (ε0/c)E ×B. The longitudinal component transforms as

Sz =
ε0
c

[
ẑ · (E′ ×B′) +

v

c2
γ2
(
E′⊥

2
+ c2B′⊥

2
)]

, (3.15)

and the transverse component transforms as

S⊥ =
ε0
c
γ
[
(E′ ×B′)⊥ −

v

c2
E ′zE

′
⊥ − vB′zB′⊥

]
. (3.16)

The combination of energy density and Poynting vector do not transform in a simple way,
although the transformation expressions do include terms like S ′0, S ′z, and S′⊥. This is
because they denote densities and not the total momentum or energy. They actually form
one column (the time-like column) of a 4×4 tensor, the stress tensor, which is in turn formed
from combinations of the electromagnetic field tensor.

When solving Maxwell’s equations we may also need to transform the current and charge
density:

jx = j′x
jy = j′y
jz = γ(j′z + vρ′)
ρ = γ(ρ′ + vj′z/c

2) . (3.17)

Total charge is a conserved quantity under Lorentz transformations.
Temperature can be a little complicated. The simplest way to consider temperature is to

define it in terms of the spread in momentum in the rest frame of a fluid. This yields a co-
moving temperature, T0, which by definition is an invariant. Because momentum transverse
to the boost is unchanged, momentum spread transverse to the fluid motion is unchanged
and the transverse temperature is σ2

p⊥/2m0. We can obtain the longitudinal temperature
by looking at the derivatives of the identity e2 = m2

0c
4 + c2p2

z and the transformation rule
p′z = γ(pz − ve/c2). The result is de/dpz = c2pz/e and

dp′z
dpz

= γ

(
1− v

c2

de

dpz

)
= γ

(
1− vpz

e

)
' γ

(
1− v〈pz〉

〈e〉

)
' γ

(
1− v2

c2

)
=

1

γ
, (3.18)

taking the velocity shift v = c2〈pz〉/〈e〉 to get into the rest frame. The longitudinal temper-
ature is then σ2

pz/2m0γ
2, where γ can be taken as corresponding to the velocity of the beam

in the lab frame. This is valid so long as the spread in momentum (in all directions) is much
smaller than 〈e〉/c ' (m2

0c
2 + 〈pz〉2)1/2. For relativistic motion in the rest frame, 〈e′〉 −m0c

2

is a better measure of temperature (actually the sum of the 3 temperatures).
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There is a more general formulation, that says that the inverse temperature, βTt = 1/kBT ,
actually has directional components too, βT = u/ckBT , where u is the velocity of the object,
and they transform by

βTx = β′Tx
βTy = β′Ty
βTz = γ(β′Tz + vβ′Tt)
βTt = γ(β′Tt + vβ′Tz/c

2) . (3.19)

The invariant is the inverse temperature in the rest frame, β2
Tt−β

2
T = β2

T0. It is more natural
to just talk about the invariant, but the topic of observing temperature in a moving frame
has come up when analyzing the cosmic microwave background.

3.4 Relativity and classical mechanics

In the lecture notes, we wrote the Hamiltonian for the lab frame and ignored how the
dynamics transforms in different reference frames. We know that electromagnetic forces do
not need to be corrected even for relativistic particles, so long as we define quantities like
momentum properly.

Here are a few helpful expressions and derivations for studying the Hamiltonian that
is correct for special relativity. Many times you will have to take partial derivates of the
gamma factor with respect to either velocity of momentum. It takes a lot of extra steps
and calculations to do this by expanding out γ every time. The best thing to do is convince
yourself one time that

∇v γ =
v

c2
γ3 (3.20)

or, equivalently,

∇v

(
1

γ

)
= − v

c2
γ . (3.21)

If you are taking the derivative with respect to something other than velocity, call it Q, then
you simply have to take the vector product of this quantity with ∂v/∂Q.

We need the Lorentz transformation for both coordinates (t, x, y, z) and conjugate mo-
mentum (h, px, py, pz) to define the extended canonical transformation that corresponds to
the Lorentz transformation in extended phase space. This extended transformation has
generating function

F2(x, y, z, t,Πx,Πy,Πz,H) = γ
[
xΠx + yΠy + zΠz − tH− v ·

(
tΠ− rH/c2

)]
. (3.22)

The velocity v only refers to the relative velocity of the new reference frame with respect to
the old one, and γ = (1− v2/c2)−1/2 as before.

The Hamiltonian keeps its form under Lorentz transformations. It is best to verify this
by looking at the electromagnetic potential fields. Even more simply, we can ignore fields
altogether, and the modified Hamiltonian satisfies H = γ (H ′ + v · Π). This matches the
condition on energy, h = γ(H + v · Π).
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Supplementary Notes 4

Gaussian Laser Beams

4.1 Wave equation

The wave equation for a charge- and current-free region can be expressed as

�E ≡ ∇2E − 1

c2

∂2E

∂t2
= 0 , (4.1)

with the constraint that ∇·E = 0. This is the d’Alembert equation and the functional form
� is often called the d’Alembertian operator. The magnetic field is given by

−1

c

∂B

∂t
= ∇×E , (4.2)

with the constraint that ∇ ·B = 0.
Often this is expressed in terms of the vector potential A, because it gives a more natural

way to impose the constraints in the fields. The wave equation itself has the same form,

�A = ∇2A− 1

c2

∂2A

∂t2
= 0 . (4.3)

We have some freedom in choosing the potentials, and we can require the scalar potential
Φ = 0 and as well choose ∇·A = 0. This gauge is specific to a particular co-ordinate system,
we could alternatively use the Lorentz gauge with the invariant condition

1

c

∂Φ

∂t
+∇ ·A = 0 . (4.4)

This yields a slightly more complicated equation (though it is still simple in the language of
the electromagnetic field tensor). We will not try to express things in an invariant way, as
we are going to take more simplifying assumptions anyhow.
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4.2 Eikonal approximation

We are going to assume that the fields we are interested in are in some sense close to a specific
plane wave. The nominal direction of propagation will be taken to be in the z-direction.
Thus, we are going to approximate A ' a exp(−iω0t+ ik0z)/2+ c.c., where c.c. refers to the
complex conjugate. The eikonal vector a will in general be complex valued. The frequency
ω0 and wave vector k0 are required to be real valued, and we need to have ω0 = ck0 in a
vacuum.

What exactly do we mean by approximate? We will allow the parameters which define
this plane wave to change, but only slowly. In its most general form, we can take

A ' 1

2
a(x, y, z, t) exp [−iω(x, y, z, t)t+ ik(x, y, z, t) · r] + c.c. . (4.5)

There will be some constraints relating frequency and wave vector, which we will actually
alter below to allow for weak corrections due to dielectrics or plasmas, and also constraints
on the amplitude and direction of a. We could even allow for damping or growth of the
waves in a medium, but for slow damping it is more natural to fold this into the factor a.

If we assume that all spatial derivatives of a, ω, and k are small compared to the range
of wave vectors we care about, for example,

|∇ω| � |kω| , (4.6)

and similarly that the time derivatives are small compared to the range of frequencies we
care about, ∣∣∣∣∂ω∂t

∣∣∣∣� ∣∣ω2
∣∣ . (4.7)

This means that not only does the pulse have to be much wider than the characteristic
wavelength, but it has to have a duration that is many periods long. In fact, short laser
pulses are extremely difficult to express analytically, even approximately, except for the case
of a pure plane wave. At this point, we have something roughly similar to a ray-tracing
algorithm.

4.3 Paraxial approximation

Now as long as ω = c|k|, the above expressions can be made to give some simplifying
results at least over some region in space and time. We are going to go one step further
and take the paraxial approximation that the frequency and direction of the radiation never
vary enough to have to worry about one frequency component changing quickly relative to
another frequency component. In practice, this just means that the relative bandwidth of the
pulse much be much smaller than unity, and the radiation pulse cannot be changing direction
significantly (some of the corrections we we consider below could allow a large bending angle
over a large distance). It also means that the angular divergence of the pulse must be small.
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So we will just set ω ≡ ω0, k ≡ k0ẑ, and of course ω0 = ck0. Any additional phase variation
will be folded into the amplitude a. Something like a pre-defined frequency chirp that is
itself slow but continues long enough to lead to a large could be handled explicitly, that will
not be considered here.

The eikonal field is then

A ' 1

2
a(x, y, z, t) exp (−iω0t+ ik0z) + c.c. . (4.8)

All slow variations are folded into a, which may for example included changes such as phase
oscillations in time if the frequency is slightly shifted.

The eikonal equation expands out to

0 = �A '
[(

ω2
0

c2
− k2

0

)
a+ 2i

(
ω0

c2

∂a

∂t
+ k0

∂a

∂z

)
− 1

c2

∂2a

∂t2
+∇2a

]
exp(−iω0t+ik0z)+c.c. .

(4.9)
To be valid everywhere, the term in brackets must vanish. We can now look at terms order
by order in terms of comparing the frequency to time derivatives, and wave vector to spatial
derivatives. The leading order term is simply ω2

0/c
2− k2

0. We eliminate this term by making
sure that the magnitude of the wave vector equals ω0/c by definition.

We could keep all of the remaining terms, and this will actual capture some interesting
physical effects. However, to simplify things further, one normally throws out quantities
which are much smaller than other terms above. However, we have to be careful about
how this is done. The second derivative in time should be much smaller than iω0∂a/∂t.
Because the term we are ignoring is in phase with the nominal field, there are not even
any subtle effects which might be obscured by this approximation. However, while we know
that ∂2a/∂z2 is small compared to ik0∂a/∂z, there is no direct comparison to ∇2

⊥a =
∂2a/∂x2 + ∂2a/∂y2. So this term should be kept. One aspect of the paraxial approximation
is that transverse scale lengths are substantially shorter than longitudinal scale lengths.

Dropping the smaller terms and dividing the whole expression by 2ik0 yields

∂a

∂z
+

ω0

k0c2

∂a

∂t
− i

2k0

∇2
⊥a ' 0 . (4.10)

This expression leaves out some physical effects such as group velocity changes related to
the fact that total path length of the pulse is a function of z and radius. But usually this is
an excellent first approximation. Note that ω0/k0c has already been defined to be unity.

We also have to include the constraint that ∇ ·A = 0. This simplifies to

ik0az +∇ · a = 0 . (4.11)

Because this expression is dominated by k0, az has to almost vanish, and we can ignore az
in the second term to yield

az '
i

k0

∇⊥ · a⊥ . (4.12)
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Thus Eq. (4.10) should only be applied to the transverse components of the vector potential.
The electric field is given by

E = −1

c

∂A

∂t

= − 1

2c

[(
−iω0a+

∂a

∂t

)
exp(−iω0t+ ik0z) + c.c.

]
. (4.13)

Roughly, we could just take the first term and the electric field is proportional to the vector
potential. However, there are important implications to the full expression, in particular
the electric field observed at a fixed point has to integrate out to zero as a pulse passes by.
This is an important constraint that governs how laser pulses interact with particles, and is
particularly important for schemes involving particle acceleration.

If we now assume a Gaussian profile for the laser beam (higher order modes could be
considered as well), we can get a good guess for what the radiation pulse looks like, espe-
cially the transverse components. The transverse eikonal field is still a vector but the two
polarizations decouple, so we just write it as a scalar. The term i

2k0
∇2
⊥a should be weak

because it has k0 in the denominator. Thus, we know we are looking at a correction to the
1D equation a = f(z − ct). A good way to parametrize the complete solution including
transverse effects looks very similar to the formalism used for particle beams,

a(x, y, z, t) = a0f(z − ct)R(z) exp [iδ(z)] exp

[
−k0x

2 1 + iαx(z)

2βx(z)
− k0y

2 1 + iαy(z)

2βy(z)

]
. (4.14)

For simplicity, let’s assume cylindrical symmetry,

a(x, y, z, t) = a0f(z − ct)R(z) exp [iδ(z)] exp

[
−k0(x2 + y2)

1 + iα(z)

2β(z)

]
. (4.15)

The quantities R, δ, α, and β are all required to be real-valued. Otherwise we could reduce
this to two functions, but separating terms would be a little more complicated. The time
derivative cancels out by virtue of how f is written, so what remains is

1

a

∂a

∂z
+

1

ac

∂a

∂t
=
R′

R
+ iδ′ − k0r

2

2β2
[−β′(1 + iα) + iα′β] . (4.16)

We have written R′ = dR/dz. This has to be compared with the transverse gradient term

i

2k0

1

a
∇2
⊥a = ik0r

2 (1 + iα)2

2β2
− i1 + iα

β
. (4.17)

These equations can be grouped into four independent equations by taking real and imaginary
parts, and terms proportional to r2 versus independent of radius.

Real, independent of radius:
R′

R
=
α

β
. (4.18)
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Imaginary, independent of radius:

δ′ = − 1

β
. (4.19)

Real, quadratic in radius:
α = −β′/2 . (4.20)

Imaginary, quadratic in radius: using α = −β′/2, this simplifies to

1

2
ββ′′ − 1

4
(β′)2 − 1 = 0 . (4.21)

In addition, R′/R = −β′/2β, which implies that R(z) ∝ β−1/2. This is consistent with the
conservation of energy flux (which goes like |a|2) across different planes in z. The equation for
the beta function is similar to that for a particle beam without any focusing. The solution
has a minimum beta function β0, corresponding to a minimum rms spot size in intensity
(which goes like |a2|) σ2

x0 = σ2
y0 = β0/2k0. This definition of β0 winds up being identical

to the Rayleigh range ZR. The radiation pulse cross-section (again, in terms of intensity)
matches that of a particle beam with geometric emittance equal to 1/2k0. In addition, if
one follows a particular region within the pulse as it propagates, there is a phase shift of π
going from one side of the region of minimum cross section to the other. You can think of
half of this phase shift coming from each of the horizontal and vertical contributions.

This is not the most general functional form possible, besides changes in frequency over
time one could have movement in the radiation waist location or other variations, but it is
the most appropriate for a basic well-controlled laser pulse.

4.4 Transverse focusing

For propagation in a vacuum with no boundary conditions, there will not be any way to alter
the process of diffraction. Waveguides are one means to guide a radiation pulse transversely.
Alternatively, a cylindrical channel with any radial variation that affects the electromagnetic
fields can be used to generate some focusing. The two main methods to accomplish this, a
dielectric with a gradient in dielectric parameter or a plasma with a density gradient, work
in essentially the same way.

A dielectric with index of refraction n typically has dielectric parameter ε = n2ε0. We
will assume this has a transverse gradient. Similarly, a plasma has dielectric parameter
ε0(1 − ω2

p/ω
2). We can assume the frequency is roughly ω0. The plasma frequency ωp

goes like the square root of the density, so a density gradient will yield a focusing effect
as well. If the dielectric parameter is very close to unity, we can just take this as another
perturbative term. Otherwise, as long as the variation is slow and over a narrow interval,
the only correction is that we can no longer assume ω0 = ck0. Instead, we should use the
corresponding dispersion equations, either ω0 = ck0/n0 for a dielectric or ω2

0 = c2k2
0 + ω2

p0.
In both of these cases it is natural to take the nominal value on axis as a reference point,

18



and take ε = ε1[1 +M(z) + r2/L2(z)]. The quantity ε1 is taken as a constant, and we should
have |M | � 1 to keep things simple. This yields two extra terms in the wave equation,

∇2A− ε1
ε0c2

∂2A

∂t2
=

1

c2

[
M(z) +

r2

L2(z)

]
∂2A

∂t2
. (4.22)

The first correction modifies the dispersion equation, and the second term gives a possi-
bly varying focusing term. In terms of the expression for a (choosing one perpendicular
component) we now have

∂a

∂z
+

ω0ε1
ε0k0c2

∂a

∂t
− i

2k0

∇2
⊥a ' i

ω2
0ε1

2ε0k0c2

[
M(z) +

r2

L2(z)

]
a . (4.23)

There should normally be no need to simultaneously consider deviations in the dielectric
parameter and derivatives of the eikonal field. Higher order derivatives are required to get
the group velocity correct.

The only changes to the evolution of a Gaussian pulse are in the equations for δ and β.
We now have

δ′ = − 1

β
− 1

2
k0M(z) , (4.24)

1

2
ββ′′ − 1

4
(β′)2 + β2 1

L2(z)
− 1 = 0 . (4.25)

This is exactly the same as the equation for the betatron function for particle beams if we
identify K(z) = 1/L2(z). If the radiation is moving along a path that is not quite straight,
it is desirable to switch to a path length coordinate s just as for a particle beam.

For a constant parabolic profile L, we can have an equilibrium solution with β ≡ L. If
the beam is mismatched, there would be an oscillation between a minimum and maximum
β so as to satisfy βminβmax = L2. In terms of the rms power spot size σx = σy =

√
β/2k,

this yields

σx,minσx,max =
L

2k0

. (4.26)

4.5 More conventional parametrization

The parametrization used here can be replaced by the Rayleigh range ZR, which is the beta
function at the waist, and the value of z where the waist is located, denoted sw. The resulting
formula for the eikonal field in the case of cylindrical symmetry is

a(x, y, z, t) = a0f(z − ct) ZR
ZR + i(z − sw)

exp

[
−1

2

k0(x2 + y2)

ZR + i(z − sw)

]
(4.27)

These parameters ZR and sw have the advantage of being constant while the there is no
applied focusing of the radiation field. On the other hand, they are not as useful when
tracking a radiation field through multiple lenses. The earlier parametrization matches that
used for particle beams, and has the same nice properties of defining the transport through
an optical beamline without needing to completely redo the calculation for different initial
conditions.
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Supplementary Notes 5

Synchrotron Radiation Damping and
Heating

5.1 Classical synchrotron radiation damping

The total radiation produced by an electron moving through a transverse magnetic field is [1]

Ps =
2

3
remec

2
(v
c

)4

γ4 1

ρ2
. (5.1)

Here, re is the classical electron radius, me is the electron mass, v is the electron velocity, c
is the speed of light, γmec

2 is the total electron energy, 1/ρ = ec2B⊥/(mevγ) is the inverse
radius of curvature, and B⊥ is the transverse magnetic field.

The main effect is for the electron to lose energy, and the average energy loss will then
be compensated for in some way. There is a cooling effect on this given by

1

σE

dσE
dt

= −dPs
dE

. (5.2)

This can be seen by considering two particles with energy E and E+ δ, for small δ and time
step the first one ends with energy E−Ps(E)t while the second ends with E+δ−Ps(E+δ)t '
E − Ps(E)t − δt[dPs(E)/dE]. The energy difference after a time t is smaller by a factor of
1− t[dPs(E)/dE].

In terms of longitudinal emittance, this gives

1

εz

dεz
dt

= −dPs
dE

, (5.3)

which is more appropriate for taking averages over many turns because there will usually
be some dynamics mixing energy and time or position within the bunch. This synchrotron
motion is usually driven by RF acceleration which generates a potential well for the electrons
if they are timed so as to miss the peak electric field.
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Because the radius of curvature scales linearly with energy, for large γ and v ' c the
total radiated power scales as the square of the energy. Thus dPs/dE ' 2Ps/E.

This is not the only effect of synchrotron radiation, however. Because the radiation reac-
tion force is oriented opposite to the velocity of the particle, there are transverse components
to the damping force as well. Taking F r parallel to the momentum vector p, we have

p · F r = p · dp

dt
=

1

2

dp2

dt
=

1

2c2

dE2

dt
=
E

c2

dE

dt
= −E

c2
Ps , (5.4)

and so

F r = −p E
2

c2p2

Ps
E

. (5.5)

Thus each component of the transverse momentum shrinks,

1

px

dpx
dt
' −Ps

E
,

1

py

dpy
dt
' −Ps

E
. (5.6)

For large γ the ratio E/cp is very close to 1. In terms of momentum spread, dσpx/dt =
−σpxPs/E. Note that the transverse momentum damping rate is half that of the energy.
Any effect on transverse momentum from the variation of power radiated with energy is
negligible, because it takes a very large transverse momentum to have an impact on the
total energy. The transverse emittances have the same damping,

1

εx

dεx
dt

= −Ps
E

,
1

εy

dεy
dt

= −Ps
E

. (5.7)

5.2 Beam phase space damping rates

Although these damping rates are fine for instantaneous changes, when taking the average
it is more appropriate to only look at the emittances.

Finally, there can be coupling between the various degrees of freedom, so that the emit-
tance changes are not exactly what was calculated. This occurs because the action coor-
dinates associated with transverse motion may have some dependence on energy and time.
Instead, it is best to look at the phase space density f or the combined 6D emittance,
ε6D ≡ εxεyεz. According to the Liouville theorem, the phase space density is conserved by
Hamiltonian processes, so only the radiation damping will change this quantity. Thus, in-
stantaneous changes in f can be integrated across the ring in a trivial way, regardless of how
complicated the Hamiltonian motion is or what the action coordinates look like.

We can directly obtain the equation for the 6D emittance,

1

ε6D

dε6D

dt
=

1

εx

dεx
dt

+
1

εy

dεy
dt

+
1

εz

dεz
dt

= −4
Ps
E

. (5.8)

This expression, known as Robinson’s sum rule [2], remains true regardless of what kind of
coupling is in the ring, even if the individual emittances have different damping rates than
predicted above.
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The equation for the phase space density f is essentially the same, it just has the opposite
sign:

df

dt
= 4

Ps
E
f . (5.9)

For the average damping rate over a ring with circumference C, it is simply necessary to
replace Ps with

P̄s ≡
1

C

∮
Ps(s) ds . (5.10)

5.3 Spectrum and fluctuations of incoherent synchrotron

radiation

The fluctuation in number of photons due to incoherent synchrotron radiation from an
individual electron will follow a Poisson distribution, so that

σN ≡
(
〈N2

ph〉 − 〈Nph〉2
)1/2

= 〈Nph〉1/2 , (5.11)

where Nph is the number of photons emitted in one instance, and 〈Nph〉 is the expectation
value of the photon number. Because emission probabilities at different times and at different
frequencies are essentially uncorrelated, the fluctuations add in quadrature, yielding

σ2
N = Nph =

∫
dt

dNph

dt
=

∫
dt

∫
dω

d2Nph

dt dω
, (5.12)

where dNph/dt and d2Nph/dt dω are the expectation values of the photon emission rate and
photon emission spectrum respectively.

The same statistics apply to the fluctuation in energy loss σ∆E, with the energy per
photon equal to ~ω:

σ2
∆E ≡ 〈(∆E)2〉 − 〈∆E〉2 =

∫
dt

∫
dω (~ω)2 d2Nph

dt dω
=

∫
dt

∫
dω (~ω)

dP

dω
, (5.13)

where ∆E is the energy loss in one instance, and dP/dω ≡ (~ω)d2Nph/dt dω is the expecta-
tion value of the power spectrum. The expectation value of the energy loss itself is

〈∆E〉 = −
∫

dt

∫
dω ~ω

d2Nph

dt dω
= −

∫
dt

∫
dω

dP

dω
. (5.14)

So long as the critical frequency ωc = (3/2)cγ3/ρ satisfies ~ωc � γmec
2 [3, 4], we can use

the classical result for radiation in a magnetic field,

Ps ≡
∫

dω
dP

dω
=

2

3
remec

2
(v
c

)4

γ4 1

ρ2
. (5.15)
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Figure 5.1: The universal spectrum function S, plotted on a regular and log scale.

We can also use the classical power spectrum

dP

dω
=
Ps
ωc
S

(
ω

ωc

)
, (5.16)

where S is known as the universal spectral function,

S(ξ) ≡ 9
√

3

8π
ξ

∫ ∞
ξ

dxK5/3(x) , (5.17)

and K5/3 is a modified Bessel function. S(ξ) is normalized such that
∫

dξ S(ξ) = 1. Upon

integrating by parts, the normalization is consistent with
∫∞

0
dx (x2/2)K5/3(x) = 8π/(9

√
3).

The spectrum decays strongly for ω � ωc, so in this regime we can ignore any corrections
which start to kick in for photon energies comparable to the energy of the electrons. The
function is plotted in Fig. 5.1.

Taking γ � 1 and v ' c, the standard deviation of the energy loss is given by

σ2
∆E =

∫
dt

∫
dω (~ω)

dP

dω
=

∫
dt (~ωc)Ps

∫
dξ ξS(ξ) =

55

24
√

3

∫
dt ~ωcPs . (5.18)

The integral
∫

dξ ξS(ξ) simplifies through integration by parts to

9
√

3

8π

∫ ∞
0

dx
x3

3
K5/3(x) =

9
√

3

8π

55π

81
=

55

24
√

3
. (5.19)

To summarize, the rate of energy spread growth due to quantum heating, assuming the
average energy loss is being compensated for, is given by

dσ2
E

dt
=

55

24
√

3
~ωcPs , (5.20)

where Ps and ωc are local quantities. The average over a ring will still have to be taken at
some point to get the effective damping rate.
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In terms of the phase space density f , the incoherent nature of this process can be glossed
over by describing this as a diffusion process, where

df

dt
=

1

2

dσ2
E

dt

∂2f

∂E2
=

55

48
√

3
~ωcPs

∂2f

∂E2
. (5.21)

The sign implies that the distribution function decreases where f is at a maximum.
In the absence of coupling, the net equation for σE is

dσ2
E

dt
= −2σ2

E

dPs
dE

+
55

24
√

3
~ωcPs = −

(
4
σ2
E

E
− 55

24
√

3
~ωc
)
Ps , (5.22)

and in terms of the longitudinal emittance we have

1

εz

dεz
dt

= −
(

2− 55

48
√

3

~ωcE
σ2
E

)
Ps
E

. (5.23)

Note that the average of the heating is slightly complicated because we have to average
over ωcPs and not just Ps as before. The factor ωc brings in an extra factor of 1/ρ, so it is
generally better to have weaker magnetic fields and softer bends. Below, we just redefine ωc
so that ωcP̄s gives the correct average.

5.4 Equilibrium emittances

As discussed earlier, we know that there will be some synchrotron motion coupling energy
and the time coordinate (or position within the bunch), so the longitudinal emittance is a
more appropriate quantity to focus on than the energy spread. But there is an unspecified
amount of coupling between the energy and other degrees of freedom, so we should really
look at evolution of the product of the emittances,

1

ε6D

dε6D

dt
= −

(
4− 55

48
√

3

~ωcE
σ2
E

)
Ps
E

. (5.24)

This can also be described in terms of the phase space density,

df

dt
=

(
4f +

55

48
√

3
~ωcE

∂2f

∂E2

)
Ps
E

. (5.25)

If we ignore coupling altogether, the equilibrium energy spread will be given by

σE0

E
=

(
55

96
√

3

~ωc
E

)1/2

. (5.26)

The bunch length will simultaneously evolve until reaching equilibrium, but that is set by the
above condition on energy spread and the synchrotron motion. In such a case, the transverse
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degrees of freedom will not reach an equilibrium until other effects come into play to counter
the transverse damping.

In the presence of coupling, not only will the damping terms change but new heating
terms will appear in the expressions for transverse emittances. A careful definition of the
horizontal action will contain terms related to the energy offset, so scattering in energy will be
associated with scattering in horizontal action as well. Thus, the 6D phase space equations
need to be modified to include more heating terms even when the synchrotron radiation,
which is the source of the heating, remains unchanged. These will set the equilibrium
horizontal and vertical emittances.

The equilibrium energy spread itself should only be slightly affected if the coupling is
weak, because energy offsets are already a major aspect of the longitudinal action. However,
the horizontal emittance in particular is coupled to energy through the presence of dispersion
(and its derivative) in the dipoles. As electrons lose variable amount of energy, their nominal
orbits jump around and this drives horizontal emittance growth.

The equilibrium horizontal size typically scales as

σx0 ' |ηx|
σE0

E
, (5.27)

where ηx is the horizontal dispersion. This is typically < 1 m, which can yield spot sizes of
100 micron or smaller, and normalized emittances of 1 µm. One way to get around this is to
have most of the radiated power come from wigglers (with strong, oscillating transverse fields)
instead of dipole bends. As long as the beam transport is designed so that the dispersion in
the wigglers is weak, there will be very little heating of the horizontal emittance. However,
the bends are still there (these are rings after all), and even if the dipole fields are made quite
weak and the circumference of the ring is made very large, there will still be a significant
equilibrium horizontal emittance.

The vertical emittance can be much smaller if there are no vertical bends. Alignment
errors and accidental coupling will yield some finite residual vertical emittance. In principle,
there are some transverse kicks due to quantum effects in the same way that there are energy
kicks. However, the radiation is already in a narrow cone with angles on the order of 1/γ,
and it would be quite unusual for the vertical emittance to approach a quality where such
effects matter. Furthermore, the fact that the horizontal emittance is much larger means
that often the vertical emittance is completely ignorable.
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